

Revista on-line http://www.scientia-amazonia.org

ISSN:2238.1910

Diagnóstico florístico de macrófitas aquáticas de ocorrência em piscicultura na região da Amazônia Ocidental, Brasil

Santina Rodrigues Santana¹, Fabiano Moreira Figueiredo², Daniela Lemes da Costa³, Alisson Franklin Saviczki⁴, Litssa Caroline Franco Pagadigorria⁵

Resumo

Os estudos com macrófitas aquáticas tem sido irrelevantes na região da Amazônia Ocidental, principalmente no Estado de Rondônia onde não existe estudos realizados, apesar da diversidade genética e de sua importância ecológica desempenhando diferentes papeis no ambiente aquático. Diante do exposto, o objetivo deste estudo foi realizar um diagnóstico florístico das macrófitas aquáticas de ocorrência em algumas pisciculturas do estado de Rondônia, visando sua preservação já que muitos benefícios são proporcionados por elas nestes ambientes. O estudo foi realizado em três pisciculturas: Piscicultura Carlos Eduardo Matiazi, Piscicultura Pirarucu e Piscicultura Santa Helena. Os espécimes foram coletados em triplicatas para identificação e herborização, estes se encontram depositados no Herbário Rondoniense da UNIR. Foram identificadas 77 espécies distribuídas em 28 famílias botânicas. Cyperaceae foi a família mais representativa com 22 espécies, e Cyperus o gênero com maior número de espécies (14). As formas biológicas anfíbias e emergentes foram as de maiores ocorrências em todas as pisciculturas, com 53 e 37 %, respectivamente. Verificou-se que os tipos de manejo praticado é o mecânico, o biológico e o manejo químico, em alguns casos. Sugere, no futuro, desenvolver planos de manejos biológicos mais adequados para controle destas populações de macrófitas nas pisciculturas, já que muitos benefícios são proporcionados por estas plantas no ambiente aquático.

Palavras-chave: Aquicultura, Cyperaceae, formas biológicas, manejo

Floristic diagnosis of aquatic macrophytes occurring in fish farming in the Western Amazon region, Brazil - Studies on aquatic macrophytes have been irrelevant in the Western Amazon region of Brazil, especially in the state of Rondônia where there are no studies, despite the genetic diversity and ecological importance playing, different roles in the aquatic environment. The objective of this study was to conduct a floristic diagnosis of the occurrence of macrophytes in some fish farms in the state of Rondônia, aiming at their preservation since many benefits are provided by them in these environments. Carlos Eduardo Matiazi fish farm, Pirarucu fish farm and Santa Helena fish farm. The specimens were collected in triplicates for identification and herborization, and these were deposited in the Herbarium Rondoniense of UNIR. 77 species in 28 plant families were identified. Cyperaceae was the most representative family with 22 species, and *Cyperus* was the gender with the highest number of species (14). The amphibious and emerging biological forms were the highest occurrences in all fish farms, with 53 and 37 % respectively. It was found that the types of management practiced were mechanical, biological and chemical, in some cases. This work suggests that, in the future, biological management plans best suited to control these populations of macrophytes in fish farms should be developed, since many benefits are provided by these plants in the aquatic environment.

Key-words: Aquaculture, Cyperaceae, biological forms, macrophytes management

¹ Professora Adjunta, Depto de Engenharia de Pesca, UNIR, Presidente Médici, RO, Brasil. E-mail*: correspondência <u>rsant.1@hotmail.com</u>

² Engenheiro de pesca. Zaltanta, Ariquemes, RO, Brasil. E-mail, <u>fabianomfigueiredo@gmail.com</u>

³ Engenheira de pesca, UNIR, Presidente Médici, RO, Brasil, dn.medici@gmail.com

⁴ Graduando de Engenharia de Pesca, UNIR, Presidente Médici, RO, Brasil, <u>alissonmil@hotmail.com</u>

⁵ Graduanda de Engenharia de Pesca, UNIR, Presidente Médici, RO, Brasil, litssa_caroline@hotmail.com

Revista on-line http://www.scientia-amazonia.org

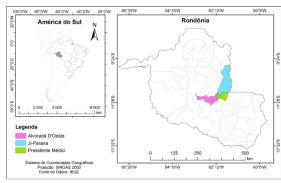
ISSN:2238.1910

1. Introdução

Macrófitas aquáticas é a denominação mais adequada para caracterizar vegetais que habitam desde brejos até ambientes verdadeiramente aquáticos. Entre os vários ambientes colonizados por macrófitas aquáticas podem-se destacar os fitotelmos, cachoeiras, lagos, lagoas, represas, brejos, rios, corredeiras, ambientes salobros, ambientes salgados, como baias, recifes e praias arenosas e rochosas, sendo responsáveis pela produção de matéria orgânica (ESTEVES, 1998).

Segundo Oron et al. (1984) a biomassa produzida pelas macrófitas aquáticas possui um alto valor protéico, entre 30 e 49 % da matéria quantidade baixa de fibras seca: (HAMMOUDA et al. 1995), podendo ser utilizada como alimento para peixes. De acordo a afirmativa de Banguecoque (NACA/FAO, 2000) a utilização de plantas aquáticas como um suplemento alimentar em atividades de aquicultura deve ser intensificada mundialmente. Esteves (1998) assinala que em pisciculturas as macrófitas aquáticas podem ser aproveitadas como fertilizantes, contribuindo com o aumento dos organismos relacionados à cadeia alimentar dos peixes.

Atualmente as pisciculturas em Rondônia vêm demonstrando grande diversidade de plantas aquáticas (observação pessoal). Heteranthera multiflora (Griseb.) C.N. Horn, Utricularia gibba L., Cyperus gardneri Nees., Eichhornia crassipes (Mart.) Solms, Pistia stratiotes L., Salvinia biloba Radd., Lemna L., são alguns exemplos. Por não ter uma técnica de manejo adequado, estas espécies vem causando grandes impactos nestas pisciculturas.


A planta aquática que causa mais problemas nas pisciculturas é o aguapé (*E. crassipes*) uma espécie muito vigorosa, que segundo Moura et al. (2009), dobra sua área a cada 6-7 dias, quando em condições ótimas de crescimento, chegando a produzir 480 toneladas. Em segundo lugar, aparece a alfaced'água (*P. stratiotes*) uma espécie que cobre totalmente o ambiente aquático, desenvolvendo-se rapidamente nos ambientes poluídos e provocando profundas alterações no ecossistema, comprometendo a fotossíntese e a

vida de outros organismos aquáticos, como os zooplânctons. Outra espécie que preocupa e é muito frequente nas pisciculturas é a orelha-deonça (*S. biloba*), assim como a alface-d'água, esta planta cobre toda a superfície d'água, bloqueando a passagem da luz solar e interferindo no ambiente aquático; segundo Moura et al. (2009) chega a produzir 650 g de biomassa seca/m²/an.

Apesar da riqueza e diversidade genética das macrófitas aquáticas encontradas nas pisciculturas da região da Amazônia Ocidental, as pesquisas são irrelevantes, precisa de estudos que abordem sua diversidade genética, taxonomia, ecologia e manejos adequados para o controle destas populações. Deste modo, o presente estudo teve como objetivo realizar um diagnóstico florístico das macrófitas aquáticas de ocorrência em algumas pisciculturas no estado de Rondônia visando sua preservação já que muitos benefícios são proporcionados por elas nestes ambientes.

2. Material e métodos

A pesquisa foi realizada no período de 2012 a 2014 em três municípios do estado de Rondônia (Figura 1). Em cada município foi escolhida uma piscicultura que cultiva principalmente o tambaqui, *Colossoma macropomum* Cuvier, 1818, espécie nativa da região Amazônica, para a realização do estudo florístico com as macrofitas aquáticas.

Figura 1: Localização do estado de Rondônia na região norte do Brasil (a esquerda); municípios do Estado onde foram realizadas o diagnóstico florístico das macrófitas aquáticas. UNIR, Presidente Médici, 2019.

Revista on-line http://www.scientia-amazonia.org ISSN:2238.1910

A Piscicultura Carlos Eduardo Matiazi, em Presidente Médici (Figura 2 a) encontra-se localizada entre as coordenadas geográficas 11°10'25'' S e 61°53' 37,31'' O; a Piscicultura Pirarucu, em Ji-Paraná, localizada entre as

coordenadas 11° 0'26.21"S e 62° 0'56.94"O (Figura 2b) e a Piscicultura Santa Helena, no município de Alvorada D'Oeste, localizada entre as coordenadas 11.4276 S-62.3695 11° 25′ 39″ O (Figura 2c).

Figura 2: Local onde foram realizadas o diagnóstico florístico das macrófitas aquáticas. A) Piscicultura Carlos Eduardo Matiaze; B) Piscicultura Pirarucu; C) Piscicultura Santa Helena. UNIR, Presidente Médici. 2019.

O levantamento florístico foi realizado entre 2012 a 2014 abrangendo estações secas e chuvosas. Os espécimes foram coletados mensalmente, em triplicatas de forma aleatória, abrangendo todas as macrófitas aquáticas distintas existentes nas pisciculturas nomeadas.

A metodologia adotada para os trabalhos de campo e herborização seguiram as recomendações de Fidalgo & Bonini (1989). Adotou-se o uso de canoa e colete salva-vidas em represas mais profundas, como medida de segurança. As plantas submersas foram coletadas com peneiras de tamanho médio com malha fina. Para as plantas emergentes utilizou-se um desplantador como apetrecho de coleta;

adotou-se o uso de botas de borracha com cano médio e luvas de borrachas para evitar picadas de animais peçonhentos. Todo o material botânico coletado foram transportado para o Laboratório de Ciências Ambientais na Universidade Federal de Rondônia, Campus de Presidente Médici, para proceder com a herborizição. O material botânico foi coletado e identificado com o auxílio de bibliografias especializadas (POTT e POTT 2000, SOUZA e LORENZI 2012, BOVE e PAZ 2009) e especialistas da área.

A determinação das formas biológicas seguiu a classificação para plantas aquáticas, que são: anfíbias, flutuantes livres, flutuantes

Revista on-line http://www.scientia-amazonia.org ISSN:2238.1910

fixas, submersas livres, submersas fixas, emergentes e epífitas (POTT e POTT, 2000). O sistema de classificação adotado para o nível de família foi o APG III (2012). Para cada planta foi anotada o nome da família botânica, nome científico, nome popular e forma biológica. Todo o material botânico identificado encontrase depositado no Herbário Rondoniense (RON) da Universidade Federal de Rondônia (UNIR) Porto Velho, Rondônia.

Para a análise estatística, os dados foram organizados em planilhas e os resultados expressos em gráficos com o uso do programa Microsoft Excel.

Os estudos com as macrófitas aquáticas realizados nas pisciculturas revelaram 77 plantas, 57 identificadas em nível de espécies e 20 a nível de gênero, distribuídos em 28 famílias botânicas (Tabela 1).

Para a Piscicultura Carlos Eduardo Matiazze foram registradas 32 espécies de macrófitas aquáticas, na Piscicultura Santa Helena 26 e na Piscicultura Pirarucu 19 espécies.

Das 28 famílias botânicas catalogadas, as que mais se destacaram em termos de riqueza florística foram Cyperaceae com 22 espécies e Poaceae com oito (Tabela 1).

3. Resultados e Discussão

Tabela 1- Relação das macrófitas aquáticas catalogadas em algumas pisciculturas em Rondônia, com suas respectivas famílias botânicas, nome científico, nome popular e formas biológicas.

FAMÍLIAS/ESPÉCIES	ne popular e formas biológica Nome Popular	Forma Biológica
ALISMATACEAE	Trome Topular	1 01 ma Diologica
Echinodorus macrophyllus (Kunth) Micheli.	Chapéu de couro	Emergente
Sagittaria guayanensis H.B.K.	Sagitaria	Emergente
APOCYNACEAE	Zugrunru	Emergeme
Asclepias curassavica L.	Paina de sapo	Anfíbia
ARACEAE	ruma av sup s	1 21111010
Lemna minor L.	Lentilha d'água	Flutuante livre
Pistia stratiotes L.	Alface d'água	Flutuante livre
ASTERACEAE		
Ageratum sp.	Agerato d'água	Emergente
Eclipta prostrata (L.) L.	Erva botão	Anfíbia
COMMELINACEAE		
Commelina sp.	Trapoeraba roxa	Emergente
CYPERACEAE	•	<u> </u>
Cyperus digitatus Roxb.	Tiririca	Anfíbia
C. esculentus L.	Tiririca	Anfíbia
C. gardneri Nees.	Baceiro	Anfíbia
C. giganteus Vahl.	Tiririca	Emergente
C. haspan L.	Três quinas	Anfíbia
C. luzulae (L.) Rottb ex Retz.	Capim de botão	Anfíbia
C. lanceolatus Poir.	Tiririca do brejo	Emergente
C. surinamensis Rottb.	Tiririca	Emergente
Cyperus sp. 1	Não encontrado	Anfíbia
Cyperus sp. 2	Não encontrado	Anfíbia
Cyperus sp. 3	Não encontrado	Anfíbia
Cyperus sp. 4	Não encontrado	Anfíbia
Cyperus sp. 5	Não encontrado	Anfíbia
Cyperus sp. 6	Não encontrado	Anfíbia
Eleocharis minima Kunth.	Não encontrado	Submersa fixa
Eleocharis nudipes (Kunth.) Palla.	Não encontrado	Anfíbia
Fimbristylis dichotoma (L.) Vahl.	Falso alecrim	Emergente
F. miliacea	Não encontrado	Emergente
Fuirena umbellata Rottb.	Tiriricão do brejo	Emergente
Rhynchospora corymbosa (L.) Britt.	Não encontrado	Anfíbia
Rhynchospora velutina (Kunth.) Boeck.	Não encontrado	Anfíbia
Rhynchospora sp.	Capim navalha	Emergente
GENTIANACEAE		

Scientia Amazonia, v. 9, n. 1, CA17-CA24, 2020 Revista on-line http://www.scientia-amazonia.org ISSN:2238.1910

C		
Schultesia guianensis (Aubl.) Malme.	Fel da terra	Emergente
IRIDACEAE		
Alophia coerulea (Vall.) Chukr.	Ruibarbo do campo	Emergente
JUNCACEAE	т . 1	T
Juncus microcephalus Kunth. LAMIACEAE	Junquinho	Emergente
	Não encontrado	Anfíbia
Hyptis lorentiziana O. Hoffm. Hyptis1	Não encontrado	Anfíbia
Hyptis sp. 2	Não encontrado	Anfíbia
Marsypianthes chamaedrys (Vahl.) Kuntze	Paracari	Anfíbia
Continuação	Turucuri	7 IIII Olu
Communique		
LENTIBULARIACEAE		
Utricularia gibba L.	Lodo	Submersa livre
LYCOPODIACEAE		
Lycopodiella alopecuroides (L.) Cranfill.	Licopódio	Anfíbia
LIMNOCHARITACEAE		
Limnocharis flava (L.) Buchenau.	Não encontrado	Emergente
MALVACEAE		
Sida spinosa L.	Malvinha	Anfíbia
Sida sp. 1	Guanxuma	Anfíbia
Sida sp. 2	Guanxuma	Anfíbia
Sida sp. 3 MELASTOMATACEAE		Anfíbia
Rhynchanthera novemnervia DC.	Não encontrado	Emergente
MIMOSACEAE	Não encontrado	Emergente
Mimosa sp.	Mimosa	Emergente
NYMPHAEACEAE	Williosa	Emergence
Nymphaea lingulata Wiersema.	Lírio d'água	Flutuante fixa
ONAGRACEAE	8	
Ludwigia elegans (Cambess.) Hara.	Cruz de malta	Emergente
L. grandiflora (Michx) Zardini.	Cruz de malta	Emergente
L. lagunae (Morong.) Hara.	Cruz de malta	Emergente
L. longiflia (DC.) Hara.	Cruz de malta	Anfíbia
L. tomentosa (Cambess.) Hara.	Cruz de malta	Anfíbia
L. leptocarpa (Nutt.) Hara.	Ova de peixe	Emergente
Ludwigia sp.	Cruz de malta	Emergente
POLYGONACEAE	Eman de biska	A £41. :
Polygonum hydropiperoides Michx. POACEAE	Erva de bicho	Anfíbia
Acroceras zizanioides (Kunth) Dandy	Braquiária d'água	Emergente
Brachiaria humidicola (Rendle.) Schweickerdt.	Braquiária	Anfíbia
Echinochloa colonun (L.) Link.	Crista de galo	Anfíbia
Echinochloa sp.	Capim jaú	Emergente
Sporobolus indicus (L.) R. Br.	Capim touceirinha	Anfíbia
Panicum laxum Sw.	Capim taboquinha	Anfíbia
Brachiaria sp.	Capim braquiaria	Anfíbia
Panicum sp.	Não encontrado	Anfíbia
PONTEDERIACEAE		
Eichhornia crassipes (Mart.) Solms.	Aguapé	Flutuante livre
Heteranthera multiflora (Griseb.) C.N. Horn.	Orelha de onça	Emergente
PTERIDACEAE	A ~ 1	F
Acrostichum danaeifolium Langsd.& Fisch.	Avenção do mangue	Emergente
Ceratopteris pteridoides (Hook.) Hieron.	Samambaia d'água	Submersa fixa
Pityrogramma calomelanos (L.) Link.	Samambaia	Anfíbia
RUBIACEAE Borreria sp.	Vassourinha	Anfíbia
Mitracarpus hirtus (L.) DC.	Poaia	Anfibia Anfibia
nimacui pus imius (L.) DC.	1 Oaia	1 Millioia

Revista on-line http://www.scientia-amazonia.org ISSN:2238.1910

SALVINIACEAE		
Salvinia biloba Raddi.	Orelha de onça	Flutuante livre
SCROPHULARIACEAE		
Lindernia crustacea (L.) F. Muell.	Orelha de rato	Anfíbia
Torenia thouarsii (Cham. & Achltdl.) Kuntze	Amor perfeito	Anfíbia
THELYPTERIDACEAE		
Thelypteris dentata (G. Forst.) E.P.St. John	Samambaia do mato	Anfíbia
TURNERACEAE		
Turnera ulmifolia L.	Flor do guarujá	Emergente
VERBENACEAE		
Lantana trifolia L.	Não encontrado	Emergente
Stachytarpheta cayennensis (Rich.) Vahl.	Gervão	Anfíbia

Estudos realizados com macrófitas aquáticas no Brasil apresentam também a família Cyperaceae como a mais representativa de todas (PIVARI et al. 2008, PAZ e BOVE, 2009, HENRY-SILVA et al., 2010, ALMEIDA 2012).

Segundo Pott e Pott (2000) espécies desta família tendem a dominar nos ambientes hídricos por apresentar propagação por rizomas, tubérculos, estolões e também por sementes. Nas pisciculturas estudadas, observou-se a ocorrência de espécies de Cyperaceae nas regiões litorâneas dos viveiros, juntamente com outras macrófitas formando extensas comunidades.

Poaceae é uma família botânica com características ecológicas próximas à família Cyperaceae, apresenta hábito herbáceo, propagação por rizomas e estolões, podendo formar um tapete gramíneo sendo a base da cadeia alimentar de muitos herbívoros nas pisciculturas estudadas, como as capivaras por exemplo.

Segundo Esteves (1998), a diversidade de espécies animais nas regiões litorâneas dos ecossistemas aquáticos pode ser atribuída principalmente à alta produtividade das comunidades de macrófitas aquáticas, pois elas formam um micro-habitat para muitas espécies de animais aquáticos servindo de refúgio e abrigo para peixes, moluscos, insetos, filhotes de jacaré; substrato para associações de algas perifíticas e bactérias fixadoras de nitrogênio, e, além disso, muitas plantas aquáticas podem ser utilizadas no controle de poluição e eutrofização artificial.

Quanto às formas biológicas, estas foram bem diversificadas. Notou-se predominância de espécies anfíbias e emergentes com 53 % e 37 %, respectivamente.

Estes dados revelam que a maior parte da diversidade das macrófitas aquáticas presentes nestas pisciculturas está associada às áreas mais rasas e bordas dos viveiros.

Em estudos realizados por Pott e Pott (1997, foram registrados as formas anfíbias e emergentes como sendo as de maiores ocorrências. Segundo Thomaz e Bini (2003) as formas biológicas anfíbias e emergentes estão diretamente relacionadas à ocorrência do maior número de espécies na região de interfase banhado e campo, onde a região litorânea altera constantemente com as variações do nível da água.

Ouanto às macrófitas de hábitos predominantemente aquáticos (flutuante livre, flutuante fixa, submersa fixa e submersa livre) foi registrada na Piscicultura Pirarucu a alfaced'água (P. stratiotes L.), uma flutuante livre totalmente aue cobre os tanques comprometendo a fotossíntese e a vida de outras comunidades de organismos aquáticos, e a H. multiflora, conhecida popularmente como orelha-de-onça, esta planta, segundo Pott e Pott (2000) aumenta em ambientes que foi muito pisoteado, e comporta-se como planta anual.

Na Piscicultura Carlos Eduardo Matiazi foi registrado a ocorrência de *Nymphaea lingulata* W., conhecida como camalote-da-meia-noite ou flor-da-noite (POTT e POTT, 2000), porque sua antese ocorre depois da meia noite. A *Utricularia gibba* L. também se apresentou em grandes quantidades.

O controle das macrófitas aquáticas nas regiões litorâneas dos viveiros é realizado principalmente através do manejo mecânico; o manejo químico foi registrado somente em uma das piscicultura. Nesta Piscicultura após aplicação do herbicida faz o uso do fogo.

Revista on-line http://www.scientia-amazonia.org ISSN:2238.1910

Kubitza (2011) faz referência que a prática do fogo pode ser utilizada como alternativa de manejo no controle destas macrófitas. Entretanto o uso do fogo não constitui uma prática de manejo adequada, tendo em vista que certas macrófitas possuem propagação por meio de rizomas que resistem a estas condições, e após 15 dias de queimadas as mesmas rebrotam com grande vigor, o que afirma Pott e Pott (2000) em seus estudos realizados com macrófitas aquáticas no Pantanal Motogrossense.

O manejo biológico foi observado na Piscicultura Pirarucu, onde o tambaqui (*Colossoma macropomum*) faz o controle da *Lemna* sp. Segundo Palafox et al. (2005) as espécies do gênero *Lemna* têm em sua composição química aminoácidos como metionina, lisina, treonina, triptofano e leucina. Os valores de proteína variam entre 6,8 % e 45 % de peso seco, os de fibra entre 5,7 % e 16,2 % e de cinza entre 12 % e 27,6 % de peso seco.

Dentre os mamíferos, os caprinos (*Capra aegagrus* Linaeus 1758) e as capivaras (*Hydrochoerus hydrochaeris* Linnaeus 1766) fazem o pastoreio das ciperáceas e poáceas presentes nas bordas dos tanques e nos diques.

O manejo manual é o mais comumente utilizado para as macrófitas de hábito flutuante livre. Com o uso de um garfo ou rede de arrasto estas espécies são retiradas. No caso das macrófitas diminutas, como as do gênero *Lemna* utilizam-se puçás. As plantas manejadas são depositadas nos diques dos tanques e parte delas são aproveitadas para produção de compostos orgânicos utilizados posteriormente como adubo na produção de mudas de espécies florestais.

Conclusão

O estudo realizado com as macrófitas aquáticas nas três pisciculturas do estado de Rondônia permitiu identificar 28 famílias botânicas e 77 espécies.

O hábito anfíbia foi predominante com 53 % e as formas flutuante fixa e submersa livre com a menor proporção, 1 % cada.

As espécies com maior número de indivíduos, são *Pistia stratiotes, Salvia biloba, Eichhornia crassipes e Lenna minor*. Sendo as que mais os produtores devido à sua rápida proliferação.

Todas as práticas de manejo são adotadas, contudo o mais comumente utilizado é o manual.

O conhecimento do germoplasma de plantas aquáticas nas piscicultura é importante para traçar planos de manejos adequados já que muitos benefícios são ecologicamente proporcionados por estas espécies.

A grande diversidade genética encontrada entre as populações de macrófitas aquáticas, mostra que é possível realizar estudos que visam a identificação de genótipos promissores para serem inseridos como fonte alternativa na dieta alimentar de peixes; garantir a conservação e uso sustentável deste recurso genético na Amazônia.

Agradecimentos

À Fundação Universidade Federal de Rondônia (UNIR) pela bolsa cedida; ao Sr. Edson Anciliero e Lázaro pela disponibilização das pisciculturas e pelas informações fornecidas. À professora Dra Vali Joana Pott da Universidade Federal de Mato Grosso do Sul, Campus do Pantanal, Corumbá, pela identificação de algumas espécies.

Divulgação

Este artigo é inédito. Os autores e revisores não relataram qualquer conflito de interesse durante a sua avaliação. Logo, a revista *Scientia Amazonia* detém os direitos autorais, tem a aprovação e a permissão dos autores para divulgação, deste artigo, por meio eletrônico.

Referências

APG II: An update of the Angiosperm Phylogeny Group classification for ordens and families of flowering plants. **Botanical Journal of the Lennean Society**, 2003, 141: 399-436.

BOVE, C. P. & PAZ, J. Guia de Plantas Aquáticas do Parque Nacional da Restinga De Jurubatiba. Rio de Janeiro: Museu Nacional. 2009, 175 P.

Revista on-line http://www.scientia-amazonia.org ISSN:2238.1910

ESTEVES, F. A. Fundamentos de Limnologia. 2nd edição. Rio de Janeiro. Interciência: FINEP, 1998, 226p.

FIDALGO, O., BONINE, V. L. R. Técnicas de coleta, preservação e herborização de material botânico. São Paulo. Instituto de Botânica. 1989, 62p.

HAMMOUDA, O., GABER, A., ADBEL-HAMMED, M. S. Assessment of the effectiveness of treatment of waste-water-contamined aquatic systems with Lemna gibba. **Technoly**, 1995, 17: 317-323.

HENRY-SILVA, G. G., MOURA, R. S. T., DANTAS, L. L. O. Richness and distribution of aquatic macrophytes in Brazilian semi-arid aquatic ecosystems. **Acta Limnologica Brasiliensia**, 2010 22(2): 147-156.

KUBITZA, F. Controle de Plantas aquáticas em viveiros de criação de Peixes. Panorama da Aquicultura, 2011, 21.

MACHADO-FILHO, H. O., CABRAL, L. L., MELO, J. I. M., ZICKEL, C., MOURA, A. N. Macrófitas aquáticas da região neotropical: uma abordagem cientométrica. **Revista Biociências**, 2014, 20(2): 90-106.

MOURA, M. A. M., FRANCO, D. A. S. MATALLO, M. B. Manejo integrado de macrófitas aquáticas. **Biológico**, 2009, 71(1): 77-82.

NACA/FAO. Desenvolvimento da aquacultura para além de 2000: a declaração de Banquecoque e estratégia. Conferência sobre aquacultura no terceiro milênio. Roma, 2000, 22 p.

ORON, G., WILDSCHUT, L. R., PORATH, D. Waste water recycling by duckweed for protein production an effluent renovation. **Water Science and Technology,** 1984, 17: 803-817.

PALAFOX, P., JESÚS, T. TOUSSAINT, F. CRUZ, O., CUTIÑO, E., OSMAIDA, L. Perspectivas de la Lemna sp. para la alimentación de peces. **Revista eletrônica de veterinária, Redvet**, 2005, 6(3): 1-6.

PIVARI, M. O. D., SALIMENA, F. R. G., POTT, V. J., POTT, A. Macrófitas Aquáticas da Lagoa Silvana, Vale do Rio Doce, Minas Gerais, Brasil. **Iheringia, Série Botânica**,2008, 63(2): 321-327.

POTT, V. J., POTT, V. J. Checklist da macrófitas aquáticas do Pantanal, Brasil. **Acta Botânica Brasilica**, 1997 11(2): 215-227.

POTT, V. J., POTT, V. J. 2000. Plantas Aquáticas do Pantanal. 1ra ed. Brasília: Embrapa, 2000, 404p.

SOUZA, V. C. & LORENZI, H. Botânica Sistemática: Guia ilustrado para identificação das famílias de fanerógamas nativas e exótica no Brasil, baseado em APG III. 3 ed. São Paulo: Instituto Plantarum. 2013, 704 p.

THOMAZ, S. M.; BINI, L. M. Ecologia e manejo de macrófitas aquáticas. Maringá: Eduem. 2003, 342 p.