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Resumo 
Neste artigo de revisão estudaremos o modelo de Ising bidimensional. O modelo consiste de 

interações ferromagnéticas 𝐽𝑦 = 𝜆𝐽𝑥nas direções 𝑥(𝑦). Para alguns valores do parâmetro λ serão 

obtidos a magnetização como uma função da temperatura 𝑇 , usando da técnica do operador 

diferencial, proposta por Honmura e Kaneyoshi  (1979), baseada na teoria de campo efetivo com 

aglomerado finito de 𝑁 = 1 spins (EFT-1). 

 

Palavras-Chave: Modelo de Ising, Teoria de campo efetivo, rede quadrada. 

 

Abstract 
In this paper we have studied the two-dimensional rectangular Ising model. The model consists of 

ferromagnetic interactions 𝐽𝑦 = 𝜆𝐽𝑥  in the 𝑥(𝑦) direction. For some values λ we obtain the 

magnetization 𝑚 as a function temperature 𝑇, using the framework of the differential operator 

technique, proposal by Honmura and Kaneyoshi (1979), based in the effective field theory with finite 

cluster of 𝑁 = 1 spins (EFT-1). 
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1. Introduction 
The Ising model is a well-known and 

studied model in the statistical mechanics. 

Because of its simplicity, this model has 

attracted the concerted attention for over 80 

years. The Ising model was first solved in one-

dimensional, where was observed that it have 

not phase transition at a finite temperature 

(i.e., 𝑇𝑐 = 0 (ISING, 1925). In 1944, Onsager 

(1944) obtained an exact expression for the 

free energy of the Ising model on a square 

lattice in zero field, and in 1952 Yang (1952) 

presented a computation of the spontaneous 

magnetization. Recently, Zhang (2007) has 

presented a conjectured expression for the free 

energy and spontaneous magnetization of the 

3d Ising model, but some authors have argued 

that these conjectures are false (WU et al., 

2008). The most reliable estimates for the 

phase transition temperature 𝑇𝑐 in the 3d Ising 

model were computed by using high-

temperature series and Monte Carlo (MC) 

methods (MCCOY e WU, 1973; BAXTER, 

1982). The best estimates rely on finite-size 

scaling of MC simulations on a simple cubic 

lattice is 𝑘𝐵 𝑇𝑐 𝐽⁄ = 4.5115240(21), while 

on a square lattice we have an exact value  

𝑘𝐵 𝑇𝑐 𝐽⁄ = 2 𝑙𝑛⁄ (1 + √2) ≃

2.269185314.... 

Another motivation to study the Ising 

model is because itcan be used to describe the 

critical behavior of a broad class of materials, 

including easyaxis magnets, binary alloys, 

simple liquids and their mixture, polymer 

solutions, subnuclearmatter, etc. (ANDREI N. 

et al., 1983; CHUNG et al.,1983; WHITE, 

1993 ). 

It is the purpose of the present paper 

to calculate the spontaneous magnetization 

(i.e.,the intensity of magnetization at zero 

external magnetical field) of a two-

dimensional Ising model of a ferromagnet. 

Van der Waerden (1993) and Ashkin and 

Lamb had obtained a series expansion of the 

spontaneous magnetization that converges 

very rapidly at low temperature (KUZ’MIN, 

2005). Near the critical temperature, however, 

their series expansion cannot be used. We shall 

here obtain a close expression for the 

spontaneous magnetization by the matrix 

method which was introduced into the 

problem of the statistical of a two-dimensional 

Ising model by Montroll and Kramers and 

Wannier (HONMURA e KANEYOSHI, 

1979; TUCKER, 1994). Onsager gave in 1944 

a complete solution of the matrix problem. His 

method was subsequently greatly simplified 

by B. Kaufmam (1993), and the result has been 

used to calculate the short-range order in the 

crystal lattice (FISHMAN e VIGNALE, 

1991). 

This paper will be presented in the 

following way: in the Section 2, we will 

develop with details the model of Montroll 

being used effective-field theory in clusters 

with one spin (EFT-1) (STRIEB e CALLEN, 

1963; FISHMAN e LIU, 1992; IDOGAKI e 

URYÛ, 1992; JIANG e FISHMAN, 1993; 

CHAKRABORTY, 1993; DO 

NASCIMENTO et al., 2012), in the Section 3 

the behavior of the magnetization 𝑚 as a 

function reduced temperature given by 𝑇, 

varying the exchange ratio 𝐽𝑦 𝐽𝑥⁄  among the 

directions 𝑥 and 𝑦, and finally in the Section 4 

the due conclusions of this paper. 
 

2. Model and formalism 

A. Hamiltonian 
The model to be studied is the nearest-

neighbor (𝑛𝑛) Ising antiferromagnetic in a 

longitudinal magnetic field, which is described 

by the following Hamiltonian: 

 

𝐻 = −𝐽𝑥 ∑ 𝜎𝑖
𝑧𝜎

𝑖+𝛿𝑥
⃗⃗⃗⃗  ⃗

𝑧
𝑖,𝛿𝑦
⃗⃗⃗⃗  ⃗ − 𝐽𝑦 ∑ 𝜎𝑖

𝑧𝜎
𝑖+𝛿𝑦

⃗⃗⃗⃗  ⃗
𝑧

𝑖,𝛿𝑦
⃗⃗⃗⃗  ⃗

       (1) 

where 𝜎𝑖
𝜇

 is the (𝜇 = 𝑥, 𝑦, 𝑧) component 

spin-1/2 Pauli operator at site 𝑖,𝐽𝑥(𝐽𝑦) is the 

exchange coupling along the 𝑥(𝑦) axis, 

𝛿𝑥(𝛿𝑦) denotes the nearest-neighbor vector 

along the 𝑥(𝑦) axis and we define the 

parameter 𝜆 = 𝐽𝑦𝐽𝑥. 
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On the other hand, in the case of 
𝐽

(𝑦 > 0)
𝐽𝑥 < 0

 we have the SAF (see Figure 1a) and 

AF (see figure 1b) states, respectively. The 

ground-state of the model (1) is characterized 

by a parallel spin orientation in the horizontal 

and vertical direction, see Figure 1c. In the 

absence of magnetic field 𝐻, the criticality of 

the three magnetic states (F, AF and SAF) are 

equivalent, i.e., 𝑇𝑐(0) = 𝑇𝑁(0). In the 

presence of the field the 𝐹 state present not 

phase transition, while that the AF and SAF 

states have field induced phase transition with 

𝑇𝑁
𝑆𝐴𝐹(𝐻) ≤ 𝑇𝑁

𝐴𝐹(𝐻) (WEISS, 1907). 

 
Figure 1: Representations of the SAF (a), AF (b) 

and F (c) ground states. 

 

The model is exactly solved for 𝐻 =, 

because the lattice is now composed of 

independent planes, so the critical temperature 

may be calculated by using the relation given 

in Onsager (1944) 

 

𝑠𝑖𝑛ℎ (
2𝐽𝑥

𝑘𝐵𝑇𝑁
)sinh(

2𝐽𝑦𝑥

𝑘𝐵𝑇𝑁
) = 1(2) 

    (2) 

 

where for the particular isotropic case 𝐽𝑥 =
𝐽𝑦 = 𝐽(𝜆 = 1) we have 𝑘𝐵 𝑇𝑁 𝐽⁄ =

2 𝑙𝑛⁄ (1 + √2). Effective-Field Theory To 

begin with an effective-field treatment, we 

need the averages of a general function 

involving spin operator components 𝑂({𝑛}), 

these are obtained by effectuating the 

following operations (WEISS, 1907) 

({𝑛})⟩ = ⟨
𝑇𝑟{𝑛}𝑂({𝑛})𝑒−𝛽𝐻𝑛

𝑇𝑟𝑛𝑒−𝛽𝐻𝑛
⟩ (3)

⟨𝑂
    (3) 

where the partial trace 𝑇𝑟𝑛 is taken over the set 

𝑛 of spin variables (finite cluster) specified by 

the multi-site spin Hamiltonian 𝐻𝑛 and 〈⋯ 〉 
indicates the usual canonical thermal average.  

The method deals with the effects of 

the surrounding spins of a finite cluster with N 

spins through a convenient differential-

operator technique in such a way that all 

relevant selfspin correlations are considered 

(BETHE, 1935). In contrast, the spin 

correlations are neglected in the mean-field 

procedure. The interactions within the cluster 

are exactly treated and the effect of the 

remaining lattice spins is dealt by using the 

random phase approximation (RPA). 

In order to treat the model (1) by the 

EFT approach, we consider a simple cluster on 

a lattice consisting of a central spin and z 

perimeter spins being the nearest-neighbors of 

the central one. The nearest-neighbor spins are 

substituted by an effective field produced by 

the other spins, which can be determined by 

the condition that the thermal average of the 

central spin is equal to that of its nearest-

neighbor ones. The Hamiltonian for this 

cluster is given by 

  (4) 
Using the Hamiltonian (4) in the 

approximate Callen-Suzuki relation we obtain 

the average magnetization as: 𝑚 = 〈𝜎1
𝑧〉 is 

given by 

𝑚 = 〈𝑡𝑎𝑛ℎ[𝛽(𝛼1 + 𝛼2)]〉(5)   (5) 

Where 

𝛼1 = 𝐽𝑥 ∑𝜎
(𝑖+𝛿𝑥

⃗⃗⃗⃗  ⃗)

𝑧

𝑧

𝛿𝑥
⃗⃗⃗⃗  ⃗

 

and  

𝛼2 = 𝐽𝑦 ∑𝜎
(𝑖+𝛿𝑦

⃗⃗⃗⃗  ⃗)

𝑧

𝑧

𝛿𝑥
⃗⃗⃗⃗  ⃗

 

Now using the identity 𝑒𝑥𝑝(𝑎𝐷𝑥 +

𝑏𝐷𝑦)𝐹(𝑥, 𝑦) = 𝐹(𝑥 + 𝑦 + 𝑎 + 𝑏) (where 
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𝐷𝜇 =
𝜕

𝜕𝜇
 is the differential operator) and the 

van der Waerden relation for the two-state spin 

system (KIKUCHI, 1951), i.e./ 𝑒𝑥𝑝(𝑎𝜎𝐼
𝑧) =

𝑐𝑜𝑠ℎ(𝑎) + 𝜎𝑖
𝑧𝑠𝑖𝑛ℎ(𝑎), the Eq. (5) can be 

rewritten as

 

   (6) 

with 

𝐹(𝑥, 𝑦) = 𝑡𝑎𝑛ℎ[𝛽(𝑥 + 𝑦)], where 𝛼𝜇=𝑐𝑜𝑠ℎ(𝐽𝜇𝐷𝜇) and 𝛽𝜇 = 𝑠𝑖𝑛ℎ(𝐽𝜇𝐷𝜇). 

 

The magnetizations m in Eq. (6) is 

expressed in terms of multiple spin correlation 

functions. The problem becomes 

unmanageable when we try to treat exactly all 

boundary spin-spin correlation function 

present in Eq. (6). Here we use a decoupling of 

the procedure that ignores all higher-order spin 

correlations on right-hand sides in Eq. (6), 

namely 

〈𝜎𝑖
𝑧𝜎𝑗

𝑧 …𝜎𝑖
𝑧〉 ≃ 𝑚.𝑚…𝑚 

where 𝑖 ≠ 𝑗 ≠ ⋯ ≠ 𝑙 and 𝑚 =
〈𝜎𝑖

𝑧〉. The approximation (8) neglects 

correlations between different spins but takes 

relations such as 〈(𝜎𝑖𝑣
𝑧 )2〉 = 1 exactly into 

account, while in the usual MFT all the self- 

and multispin correlations are neglected. We 

can then rewrite the Eqs. (6) in the form 

𝑚 = (𝛼𝑥 + 𝑚𝛽𝑥)
2(𝛼𝑦

+ 𝑚𝛽𝑦)
2
𝐹(𝑥, 𝑦) 𝑥=𝑦=0 

(9) 

Expanding the right-hand side of the 

Eq. (9), one obtains an equation form of the 

form: In this figure, the transition between the 

SAF and P phases is invariably of second-

order and independent of the longitudinal and 

transverse fields. 

𝑚 = 𝑎0 + 𝑎1𝑚 + 𝑎2𝑚
2 +

𝑎3𝑚
3 + 𝑎4𝑚

4(10) 

where in this work only second-order 

transitions is observed and the coefficients 𝑎0, 

𝑎1, 𝑎2 , 𝑎3 and 𝑎4   are functions of λ, see 

Appendix A. 

 

3. Results and discussion 
In Figure 2, the magnetization curve 

(𝑚) is presented as function of the reduced 

temperature for selected values of λ (= 1.0, 0.8, 

0.6, 0.4 and 0.2). The two-dimensional 

rectangular Ising model exhibits a phase 

transition, with the presence of a second-order 

transition at 𝑇 = 𝑇𝑐(𝜆). The numerical 

determination of the phase boundary (second-

order phase transition) is obtained by solving 

the Eq. (10). Near the critical temperature, the 

ferromagnetic order parameter for behaves as 

𝑚 ∼ 𝑡𝛽  and 𝜒 ∼ 𝑡−𝛾 where 
𝑐

𝑇 − 𝑇
𝑡 =

 and the 

critical exponents are classical (i.e., β = 1/2 

and γ = 1). 

 
Figure 2: Dependence of the magnetization 𝑚 as a 

function of the critical temperature, 𝑘𝐵 𝑇 𝐽𝑥⁄ , for 

the two-dimensional rectangular Ising model with 

several values of λ. 

 
Experimentally, it is also noted that 

the molar specific heat at vanishes field has 

singular behavior. This quantity may diverge 
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of according with 𝑐 ∼∨ 𝑇 − 𝑇𝑐
−𝛼. An 

example of this behavior was obtained by 

Connelly et al. for Ni (YAMAMOTO, 2009). 

For a singularity classified by α=0 the 

divergence is like-logarithmic. Some values of 

the critical exponents α, β and γ were obtained 

experimentally as: Fe (α=−0.12, β=0.39, 

γ=1.34) (ETXEBARRIA et al. 2004), Co 

(KATORI e SUZUKI, 1988) (α=..., β = 0.38, 

γ = 1.34), EuO (CHUNG, 2006) (α=−0.04, 

β=0.37, γ=1.40) and EuS (CHUNG,1952) 

(α=−0.13, β=0.36, γ=1.39). 

 

4. Conclusions 
We will discuss in this section the 

spontaneous magnetization as a function of the 

critical temperature, for the two-dimensional 

rectangular Ising model with several values of 

λ. The behavior of the critical temperature is 

increasing function of the λ (see Figure 2) in 

the onedimensional (λ = 0) limit we obtain 

𝑇𝑐 = 0. This result differs from the classical 

approach that is 𝑘𝐵 𝑇𝑐 𝐽𝑥⁄ = 2.0. 

For an Ising chain (λ=0), the 

correlation length at low temperature presents 

an exponential divergence (CONELLY, 1971) 

𝜉𝑇 ≃ 𝑒𝐴 𝑇⁄ , and for the quasi-one-

dimensional limit at T = 0 we expect the 

critical behavior 𝜉𝜆 ≃ 𝜆−1 𝜙⁄  (𝜙 is the 

crossover exponent). Therefore, comparing 

the two correlation lengths, i.e., 𝜉𝑇 = 𝜉𝜆 

(HELLER, 1967), we can explain the 

logarithmic divergence of the inverse critical 

temperature given by 𝑘𝐵 𝑇𝑐 𝐽𝑥⁄ ≃
𝐴 𝑙𝑛⁄ (1 𝜆⁄ ). The classical approach presents 

the linear behavior 𝑘𝐵 𝑇𝑐 𝐽𝑥⁄ = 2 + 2𝜆, 

which shows an incorrect result in the one-

dimensional limit (λ = 0) 𝑇𝑐 ≠ 0 

(KOUVEL,1968). 
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Appendix A 

The coefficients 𝑎0, 𝑎1, 𝑎2, 𝑎3 and 𝑎4 are 

given by 

𝑎0 = 𝛼𝑥
2𝛼𝑦

2, 

𝑎1 = 2(𝛼𝑥
2𝛼𝑦𝛽𝑦 + 𝛼𝑥𝛼𝑦

2𝛽𝑥), 

𝑎2 = (𝛼𝑥
2𝛽𝑦

2 + 4𝛼𝑥𝛽𝑥𝛼𝑥𝛽𝑦 + 𝛼𝑦
2𝛽𝑥

2), 

𝑎3 = 2(𝛼𝑥𝛽𝑥𝛽𝑦
2 + 𝛼𝑦𝛽𝑦𝛽𝑦

2), 
and 

𝛼4 = 𝛽𝑥
2𝛽𝑦

2 
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